If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(x^2+1)=394
We move all terms to the left:
x^2+(x^2+1)-(394)=0
We get rid of parentheses
x^2+x^2+1-394=0
We add all the numbers together, and all the variables
2x^2-393=0
a = 2; b = 0; c = -393;
Δ = b2-4ac
Δ = 02-4·2·(-393)
Δ = 3144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3144}=\sqrt{4*786}=\sqrt{4}*\sqrt{786}=2\sqrt{786}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{786}}{2*2}=\frac{0-2\sqrt{786}}{4} =-\frac{2\sqrt{786}}{4} =-\frac{\sqrt{786}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{786}}{2*2}=\frac{0+2\sqrt{786}}{4} =\frac{2\sqrt{786}}{4} =\frac{\sqrt{786}}{2} $
| 5=8g | | x/5+4=x | | -6m-2m=0 | | 2/5=x/150 | | 3x+55=8x+15 | | 3w+16=13 | | 17x-4-3x-8=28 | | 4^5x+4=1024 | | 7y+35=-63 | | -2(x-3)-2x=18 | | -5+5v=-30 | | 3(7-6x)=35-5x-1 | | -14=5(2x) | | x^2+(X^2+2)=394 | | 12-4*5=-4-3x+10 | | 8+2(x-3)=5x-4 | | 40-(3x+4)=4(x+5)+x | | (2x+30)=45 | | 4y-8-6y=-6y-4 | | 8(w+8)=-4w+28 | | 28-6x+(-4)=30-3x | | 3x+22x-6=5(5x+9) | | −2(x−3)−2x=18 | | x^2+X^2=394 | | -2(4x-4)=-8x-8 | | 0=1(3/5)-1/5n | | -7+2/5s=-3 | | 2m-6=83m= | | 2x-10=-7+5x | | 0=13/5-1/5n | | 5(x+3)=2(x+6 | | (2x+30)=40 |